МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский государственный гуманитарный университет» (ФГБОУ ВО «РГГУ»)

ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ СИСТЕМ И БЕЗОПАСНОСТИ

Кафедра информационных технологий и систем

МОДЕЛИРОВАНИЕ СИСТЕМ И МЕТОДЫ ОПТИМИЗАЦИИ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

09.04.03 Прикладная информатика

Код и наименование направления подготовки/специальности

Управление данными и знаниями в компьютерных сетях

Наименование направленности (профиля)/ специализации

Уровень высшего образования: магистратура

Форма обучения: очная, очно-заочная, заочная

РПД адаптирована для лиц с ограниченными возможностями здоровья и инвалидов

МОДЕЛИРОВАНИЕ СИСТЕМ И МЕТОДЫ ОПТИМИЗАЦИИ
Рабочая программа дисциплины
Составитель:
д.т.н., профессор Е.Н. Надеждин
Ответственный редактор
к.сх.н., доц., зав.кафедрой ИТС Н.Ш. Шукенбаева

УТВЕРЖДЕНО Протокол заседания кафедры ИТС № 8 от 15.04.2023 г.

СОДЕРЖАНИЕ

1	. ПО	ПСНИТЕЛЬНАЯ ЗАПИСКААТОРГАНИНОВ	.4
	1.1.	Цель и задачи дисциплины	.4
	1.2. индик	Перечень планируемых результатов обучения по дисциплине, соотнесенных с аторами достижения компетенций:	4
	1.3.	Место дисциплины в структуре образовательной программы	.5
2	. CTF	УКТУРА ДИСЦИПЛИНЫ	.6
3.	. CO)	ДЕРЖАНИЕ ДИСЦИПЛИНЫ	.7
4	. ОБР	АЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ	10
5.	. ОЦІ	ЕНКА ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ	10
	5.1.	Система оценивания	10
	5.2.	Критерии выставления оценки по дисциплине	11
	5.3. проме	Оценочные средства (материалы) для текущего контроля успеваемости, жуточной аттестации обучающихся по дисциплине	12
6. Д		ЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПЛИНЫ	15
	6.1.	Список литературы	15
	6.2.	Перечень ресурсов информационно-телекоммуникационной сети «Интернет»	16
	6.3 Пр	офессиональные базы данных и информационно-справочные системы	16
7.	. MA	ТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	17
8. O		ЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ	17
9.	. ME	ГОДИЧЕСКИЕ МАТЕРИАЛЫ	19
	9.1.	Планы практических занятий для очной, очно-заочной формы	19
	9.2.	Методические рекомендации по подготовке письменных работ	28
Π	РИЛО	КЕНИЕ	29
	Прило	жение 1. АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ	29

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.1. Цель и задачи дисциплины

Цель дисциплины: познакомить магистрантов с основными методами моделирования и оптимизации информационных систем. Дать представление о математических моделях и методах анализа и оптимизационных подходах к решению прикладных задач. Ознакомить магистрантов с методами построения аналитических и имитационных моделей процессов обработки информации, а также с оценкой результатов моделирования процессов.

Задачи:

научить магистрантов эффективно использовать принципы математического моделирования; различать типы практических задач в зависимости от типа используемой модели; правильно выбирать метод решения задач;

сформировать способность формализовать задачи прикладной области, при решении которых возникает необходимость использования количественных и качественных оценок;

сформировать способность анализировать, моделировать и оптимизировать прикладные и информационные процессы.

1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций:

Компетенция (код и наименование)	Индикаторы компетенций (код и наименование)	Результаты обучения	
УК-1 Способен	УК-1.1 Знает процедуры	Знать эволюцию системных	
осуществлять	критического анализа, методики	представлений, основные	
критический	анализа результатов исследования	положения теории систем;	
анализ	и разработки стратегий	основные понятия и определения	
проблемных	проведения исследований,	системного анализа; содержание и	
ситуаций на	организации процесса принятия	сущность математических методов	
основе	решения	моделирования и оптимизации.	
системного	УК-1.2 Умеет принимать	Уметь применять методы	
подхода,	конкретные решения для	моделирования при принятии	
вырабатывать	повышения эффективности	решений для повышения	
стратегию	процедур анализа проблем,	эффективности процедур	
действий	принятия решений и разработки	оптимизации.	
	стратегий		
	УК-1.3 Владеет методами	Владеть навыками моделирования	
	установления причинно-	при принятии решений для	
	следственных связей и	повышения эффективности	
	определения наиболее значимых	процедур оптимизации.	
	среди них; методиками		
	постановки цели и определения		
	способов ее достижения;		
	методиками разработки стратегий		
	действий при проблемных		
	ситуациях		

	ОПК-7.1 Знает методы	Знать методы математического
	научных исследований и типовые	
	математические модели в области	±
ОПК-7 Способен	проектирования информационных	
использовать	систем и управления ими	управления ими
методы научных	ОПК-7.2 Умеет применять	Уметь с позиций системного
исследований и	методы научных исследований,	анализа применять методы
математического	разрабатывать и применять	математического моделирования и
моделирования в	математические модели в области	оптимизации применительно к
области	проектирования информационных	проектированию информационных
проектирования	систем и управления ими.	систем и управления ими
и управления	ОПК-7.3 Владеет навыками	Владеть методами
информационны	проведения научных исследований,	математического моделирования и
ми системами;	разработки и применения	оптимизации применительно к
	математических моделей в области	проектированию информационных
	проектирования информационных	систем и управления ими
	систем и управления ими	

1.3. Место дисциплины в структуре образовательной программы

Дисциплина «Моделирование систем и методы оптимизации» является дисциплиной обязательной части блока Б1 учебного плана по направлению подготовки «Прикладная информатика».

Для освоения дисциплины необходимы компетенции, формируемые в ходе изучения дисциплины: "Теория информационных процессов и систем".

В результате освоения дисциплины формируются компетенции, необходимые для изучения следующих дисциплин: "Методология и технология проектирования информационных систем", "Управление ИТ-проектами", "Математические методы и модели поддержки принятия решений", "Технологии управления знаниями в организации".

2. СТРУКТУРА ДИСЦИПЛИНЫ

Общая трудоёмкость дисциплины составляет 4 з.е., 144 академических часа.

Структура дисциплины для очной формы обучения

Объем дисциплины в форме <u>контактной работы</u> обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Семестр	Тип учебных занятий	Количество часов
1	Лекции	16
1	Практические работы	24
	Bcero:	40

Объем дисциплины (модуля) в форме <u>самостоятельной работы обучающихся</u> составляет 104 академических часа.

Структура дисциплины для очно-заочной формы обучения

Объем дисциплины в форме <u>контактной работы</u> обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Семестр	Тип учебных занятий	Количество
		часов
2	Лекции	12
2	Практические работы	20
	Всего:	32

Объем дисциплины (модуля) в форме <u>самостоятельной работы обучающихся</u> составляет 94 академических часа.

Структура дисциплины для заочной формы обучения

Объем дисциплины в форме <u>контактной работы</u> обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Семестр	Тип учебных занятий	Количество
	ин ученых занятии	часов
2	Лекции	4
2	Практические работы	4
	Всего:	8

Объем дисциплины (модуля) в форме <u>самостоятельной работы обучающихся</u> составляет 128 академических часа.

3. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Раздел 1. Моделирование систем, основные понятия. Принципы построения моделей

Математическое моделирование как необходимый инструмент исследований в современной науке и технике. Информационные технологии и моделирование. Роль теории моделирования в профессиональной подготовке IT-специалистов.

Моделирование систем, основные понятия и определения. Цели моделирования. Классификация видов моделирования. Аналитическое и имитационное моделирование. Принципы построения моделей. Формальная модель системы.

Компьютерное моделирование и имитационный эксперимент как необходимая составляющая процесса моделирования. Примеры физических, аналитических и имитационных моделей информационных систем и технологий. Принципы системного подхода при построении информационных систем.

Задачи идентификации в моделировании информационных процессов. Применение оптимизации В математическом моделировании. Задание допустимой методов динамической области. Моделирование для принятия решений при управлении объектами. Гносеологические и информационные модели. Эволюционные и десиженсные модели информационных процессов. Информационный подход к решению задач илентификании процессов. Элементы прикладной теории моделирования информационных процессов. Объект прикладной теории моделирования ИС. Предмет прикладной теории моделирования ИС. Содержание, структура и логика прикладной теории моделирования ИС.

Качественные и количественные методы системного анализа объектов информатизации. Бизнес-модель ИС. Сущность метода экспертных оценок. Организация экспертного оценивания. Метод мозгового штурма. Аналитические методы представления систем. Теории, возникшие на базе аналитических представлений информационных процессов и технологий. Применение аналитических методов при анализе и синтезе ИС. Применение статистических методов. Теория выдвижения и проверки гипотез при анализе ИС. Теоретико-множественные представления. Графические методы исследования ИС. Системы и сети массового обслуживания как аппарат исследования.

Формальная модель системы. Сети Петри как системное средство анализа ИС. Марковские цепи как метод анализа ИС. Теория марковских цепей. Дискретные и непрерывные марковские цепи. Агрегативные системы.

Раздел 2. Аналитическое моделирование. Методы оптимизации

Модели теории массового обслуживания. СМО. Классификация. Марковский случайный процесс. Потоки событий. Простейший поток. Уравнения Колмогорова. Предельные вероятности состояний. Процесс «гибели и размножения». Одноканальная СМО с отказами. Многоканальная СМО с отказами. Одноканальная СМО с неограниченной очередью. Многоканальная СМО с неограниченной очередью. Понятие о статистическом моделировании СМО (методе Монте-Карло).

Модели сетевого планирования и управления. Назначение и области применения сетевого планирования и управления. Сетевая модель и ее основные элементы. Порядок и правила построения сетевых графиков. Упорядочение сетевого графика. Понятие о пути. Временные параметры сетевых графиков. Сетевое планирование в условиях неопределенности. Коэффициент напряженности работы. Анализ и оптимизация сетевого графика. Оптимизация сетевого графика методом "время — стоимость".

Раздел 3. Имитационное моделирование. Инструментальные средства

Технология имитационного моделирования информационных процессов. Система, модель и машинная имитация. Преимущества метода машинной имитации для оценки характеристик ИС. Методика моделирования процессов в ИС для решения задач системного уровня, возникающих на этапе принятия решений. Этапы проведения имитационного эксперимента с моделью ИС. Построение концептуальной модели ИС и ее формализация. Алгоритмизация модели ИС и ее машинная реализация. Получение и интерпретация результатов моделирования ИС.

Особенности моделирования ИС. Основные понятия программирования моделей. Языки моделирования. Подходы к выбору и разработке языков моделирования. Архитектура языков имитационного моделирования. Способы управления временем в модели функционирования ИС. Требования к языкам моделирования ИС. Классификация языков имитационного моделирования. Подходы к имитации процессов в ИС. Сравнительная оценка языков для моделирования информационных процессов. Выбор языка моделирования для проведения имитационных экспериментов с моделями ИС. Автоматизация моделирования ИС. Базы данных и знаний моделирования ИС.

Современные методы имитационного моделирования. Особенности структурного и объектно-ориентированного подходов. Инструментарий моделирования ИС.

Имитационное моделирование ИС в системе GPSS. Моделирование ИС в системе GPSS World. Интерактивность и визуальное представление информации. Объектно-ориентированный интерфейс пользователя. Объекты "Модель", "Процесс моделирования", "Отчет" и "Текст". Программные эксперименты с автоматическим анализом данных. Многозадачность. Библиотека PLUS-процедур. Отладка с использованием графического интерфейса.

Имитационное моделирование ИС в системе AnyLogic. Единая платформа для подходов дискретно-событийного и непрерывного моделирования. Блок-схемы процессов, системная динамика, агентное моделирование, карты состояний. Система AnyLogic как инструмент поддержки принятия решений на уровне стратегии

Имитационное моделирование ИС в среде Simulink. Общее представление о системе. Простейшие приёмы построения Simulink-моделей. Общая схема реализации имитационного моделирования в системе Simulink. Интерпретация и анализ результатов моделирования.

Раздел 4. Основы планирования эксперимента

Роль планирования эксперимента в технологических и научных исследованиях. Основные особенности эксперимента на современном этапе развития науки и техники. Основные типовые задачи, решаемые при проведении эксперимента.

Планирование эксперимента и его задачи. Качественный и количественный эксперименты. Научный и промышленный эксперимент. Активные и пассивные эксперименты. Параметры оптимизации и требования, предъявляемые к ним. Факторы. Уровень фактора. Требования, предъявляемые к факторам при планировании эксперимента. Выбор модели эксперимента. Понятия: отклик, функция отклика, поверхность отклика.

Методы планирования эксперимента. Полный факторный эксперимент. Полный факторный эксперимент типа 2^k : матрица планирования, вычисление коэффициентов уравнения регрессии. Матрица планирования полного факторного эксперимента. Проверка значимости коэффициентов и адекватности уравнения регрессии.

Дробный факторный эксперимент. Планы типа 2^{k-p} . Дробная реплика. Выбор полуреплик. Определяющий контраст, генерирующее соотношение. Выбор 1/4-реплик. Обобщающий определяющий контраст. Планы второго порядка. Композиционные планы Бокса-Уилсона. Ортогональные планы второго порядка. Критерии оптимальности планов.

Планирование эксперимента при поиске оптимальных условий. Метод покоординатной оптимизации. Оптимизация методом крутого восхождения по поверхности отклика. Симплексный метод планирования.

4. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Для проведения учебных занятий по дисциплине используются различные образовательные технологии. Для организации учебного процесса может быть использовано электронное обучение и (или) дистанционные образовательные технологии.

5. ОЦЕНКА ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

5.1.Система оценивания

Форма контроля	Макс. колич	нество баллов
	За одну	Всего
	работу	
Текущий контроль:		
- Onpoc	12 баллов	
- Практическая работа №1	8 баллов	
- Практическая работа №2	8 баллов	60 баллов
- Практическая работа №3	8 баллов	
- Практическая работа №4	8 баллов	
- Практическая работа №5	8 баллов	
- Практическая работа №6	8 баллов	
Промежуточная аттестация	40 баллов	40 баллов
Итого за семестр		100 баллов

Полученный совокупный результат конвертируется в традиционную шкалу оценок и в шкалу оценок Европейской системы переноса и накопления кредитов (European Credit Transfer System; далее – ECTS) в соответствии с таблицей:

100-балльная шкала	Традиционная шкала		Шкала ECTS
95 – 100	OTHER		A
83 – 94	отлично		В
68 - 82	хорошо	зачтено	С
56 – 67	WHO DHOT DODING HIVE		D
50 - 55	удовлетворительно		Е
20 - 49	HAVIOR HATRAMITANI NA	на понтана	FX
0 – 19	неудовлетворительно	не зачтено	F

5.2. Критерии выставления оценки по дисциплине

Баллы/ Шкала	Оценка по дисциплине	Критерии оценки результатов обучения по дисциплине
ECTS	/	D
100-83/ A,B	отлично/ зачтено	Выставляется обучающемуся, если он глубоко и прочно усвоил теоретический и практический материал, может продемонстрировать это на занятиях и в ходе промежуточной аттестации. Обучающийся исчерпывающе и логически стройно излагает учебный материал, умеет увязывать теорию с практикой, справляется с решением задач профессиональной направленности высокого уровня сложности, правильно обосновывает принятые решения. Свободно ориентируется в учебной и профессиональной литературе. Оценка по дисциплине выставляется обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции, закреплённые за дисциплиной, сформированы на уровне — «высокий».
82-68/	хорошо/	Выставляется обучающемуся, если он знает теоретический и
С	зачтено	практический материал, грамотно и, по существу, излагает его на занятиях и в ходе промежуточной аттестации, не допуская существенных неточностей. Обучающийся правильно применяет теоретические положения при решении практических задач профессиональной направленности разного уровня сложности, владеет необходимыми для этого навыками и приёмами. Достаточно хорошо ориентируется в учебной и профессиональной литературе. Оценка по дисциплине выставляется обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции, закреплённые за дисциплиной, сформированы на уровне — «хороший».
67-50/ D,E	удовлетвори- тельно/ зачтено	Выставляется обучающемуся, если он знает на базовом уровне теоретический и практический материал, допускает отдельные ошибки при его изложении на занятиях и в ходе промежуточной аттестации. Обучающийся испытывает определённые затруднения в применении теоретических положений при решении практических задач профессиональной направленности стандартного уровня сложности, владеет необходимыми для этого базовыми навыками и приёмами. Демонстрирует достаточный уровень знания учебной литературы по дисциплине. Оценка по дисциплине выставляется обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции, закреплённые за дисциплиной, сформированы на уровне — «достаточный».
49-0/ F,FX	неудовлетворит ельно/	Выставляется обучающемуся, если он не знает на базовом уровне теоретический и практический материал, допускает грубые ошибки
	не зачтено	при его изложении на занятиях и в ходе промежуточной аттестации. Обучающийся испытывает серьёзные затруднения в применении теоретических положений при решении практических задач профессиональной направленности стандартного уровня сложности, не владеет необходимыми для этого навыками и приёмами. Демонстрирует фрагментарные знания учебной литературы по дисциплине. Оценка по дисциплине выставляется обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции на уровне «достаточный», закреплённые за дисциплиной, не сформированы.

Текущий контроль

При оценивании устного опроса учитываются:

- степень раскрытия содержания материала;
- изложение материала (грамотность речи, точность использования терминологии и символики, логическая последовательность изложения материала);
- знание теории изученных вопросов, сформированность и устойчивость используемых при ответе умений и навыков.

Критерии оценивания следующие

Отпично — студент способен обобщить материал, сделать собственные выводы, выразить свое мнение, привести иллюстрирующие примеры.

Хорошо – ответы студента правильные, но неполные. Не приведены иллюстрирующие примеры, обобщающее мнение студента недостаточно четко выражено.

Удовлетворительно — ответы правильные в основных моментах, нет иллюстрирующих примеров, отсутствует собственное мнение студента, есть ошибки в деталях.

Неудовлетворительно - в ответах студента существенные ошибки в основных аспектах темы.

При оценивании защиты практической работы учитывается:

- задание выполнено не полностью и/или допущены две и более ошибки или три и более неточности 1-5 баллов;
- обоснованность содержания и выводов работы (задание выполнено полностью, но обоснование содержания и выводов недостаточны, рассуждения верны) 6-10 баллов;
- работа выполнена полностью, в рассуждениях и обосновании нет пробелов или ошибок, возможна одна неточность -10-12 баллов.

Промежуточная аттестация

При проведении промежуточной аттестации студент должен ответить на 2 вопроса теоретического характера.

При оценивании ответа на вопрос теоретического характера учитывается:

- теоретическое содержание не освоено, знание материала носит фрагментарный характер, наличие грубых ошибок в ответе (1-5 баллов);
- теоретическое содержание освоено частично, допущено не более двух-трех недочетов (6-10 баллов);
- теоретическое содержание освоено почти полностью, допущено не более одного-двух недочетов, но обучающийся смог бы их исправить самостоятельно (11-15 баллов);
- теоретическое содержание освоено полностью, ответ построен по собственному плану (16-20 баллов).

5.3.Оценочные средства (материалы) для текущего контроля успеваемости, промежуточной аттестации обучающихся по дисциплине

Вопросы к текущей аттестации (УК-1, ОПК-7)

Раздел 1

- 1. Компьютерное моделирование и имитационный эксперимент как необходимые составляющие процесса моделирования сложных систем.
- 2. Системный подход при создании информационных систем (ИС).
- 3. Жизненный цикл информационных систем.
- 4. Классификации и свойства информационных систем.

- 5. Основные составляющие процесса моделирования: физическая модель, математическая модель, компьютерная модель.
- 6. Методы моделирования информационных процессов.
- 7. Методы моделирования информационных технологий.
- 8. Идентификация в моделировании информационных процессов.
- 9. Качественные и количественные методы системного анализа объектов информатизации.
- 10. Бизнес-модель ИС.
- 11. Метод экспертных оценок.
- 12. Технология имитационного моделирования информационных процессов.
- 13. Инструментальные средства моделирования информационных систем и технологий.
- 14. Языки моделирования.
- 15. Классификация языков имитационного моделирования.
- 16. Современные методы имитационного моделирования.
- 17. Пакеты прикладных программ для моделирования информационных процессов и технологий.
- 18. Методология объектно-ориентированного моделирования с использованием языка UML.
- 19. Инструментальные средства рационализации исследования и моделирования информационных процессов и технологий.
- 20. Перспективы развития методов исследования и моделирования информационных процессов и технологий.

Раздел 4

- 1. Роль планирования эксперимента в технологических и научных исследованиях.
- 2. Основные типовые задачи, решаемые при проведении эксперимента.
- 3. Классификация экспериментов.
- 4. Факторы. Уровень фактора. Требования, предъявляемые к факторам при планировании эксперимента.
- 5. Выбор модели эксперимента. Понятия: отклик, функция отклика, поверхность отклика.
- 6. Методы планирования эксперимента. Полный факторный эксперимент типа 2^k : матрица планирования, вычисление коэффициентов уравнения регрессии. Матрица планирования полного факторного эксперимента. Проверка значимости коэффициентов и адекватности уравнения регрессии.
- 7. Методы планирования эксперимента. Дробный факторный эксперимент. Планы типа 2^{k-p} . Дробная реплика.
- 8. Планы второго порядка. Композиционные планы Бокса-Уилсона. Ортогональные планы второго порядка.
- 9. Критерии оптимальности планов.
- 10. Сущность и алгоритм симплекс-планирования (на примере планов первого порядка).

Вопросы для подготовки к промежуточной аттестации (УК-1, ОПК-7)

- 1. Сущность и особенности моделирования информационных процессов и технологий.
- 2. Математическое моделирование как необходимый инструмент исследований в современной науке и технике.
- 3. Информационные технологии и моделирование.
- 4. Роль теории моделирования в профессиональной подготовке ІТ-специалистов.
- 5. Компьютерное моделирование и имитационный эксперимент как необходимые составляющие процесса моделирования.
- 6. Примеры физических, аналитических и имитационных моделей информационных систем и технологий.
- 7. компьютерная имитация информационных процессов и технологий.
- 8. Классификация методов моделирования информационных процессов.

- 9. Задачи идентификации в моделировании информационных процессов.
- 10. Применение методов оптимизации в математическом моделировании.
- 11. Качественные и количественные методы системного анализа объектов информатизации.
- 12. Метод экспертных оценок.
- 13. Методология имитационного моделирования информационных процессов и технологий.
- 14. Технология имитационного моделирования информационных процессов.
- 15. СМО. Классификация. Марковский случайный процесс.
- 16. Потоки событий. Простейший поток.
- 17. Уравнения Колмогорова. Предельные вероятности состояний.
- 18. Процесс «гибели и размножения».
- 19. Одноканальная СМО с отказами.
- 20. Многоканальная СМО с отказами.
- 21. Одноканальная СМО с неограниченной очередью.
- 22. Многоканальная СМО с неограниченной очередью.
- 23. Основы планирования эксперимента. Полный факторный эксперимент 2^k .
- 24. Основы планирования эксперимента. Дробный факторный эксперимент 2^{k-p} .
- 25. Получение и интерпретация результатов моделирования ИС.
- 26. Инструментальные средства моделирования информационных систем и технологий.
- 27. Архитектура языков имитационного моделирования.
- 28. Классификация языков имитационного моделирования.
- 29. Подходы к имитации процессов в ИС.
- 30. Сравнительная оценка языков для моделирования информационных процессов.
- 31. Выбор языка моделирования для проведения имитационных экспериментов с моделями ИС.
- 32. Автоматизация моделирования ИС.
- 33. Базы данных и знаний моделирования ИС.
- 34. Использование пакетов прикладных программ для исследования и моделирования информационных процессов и технологий.
- 35. Исследование информационных процессов и технологий методом проведения имитационных экспериментов в среде GPSS World.
- 36. Исследование информационных процессов и технологий методом проведения имитационных экспериментов в среде AnyLogic.
- 37. Исследование информационных процессов и технологий методом проведения имитационных экспериментов в среде Simulink.
- 38. Перспективы развития методов исследования и моделирования информационных процессов и технологий.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1.Список литературы

Основная

- 1. Вьюненко Л. Ф. Имитационное моделирование: учебник и практикум для вузов / Л. Ф. Вьюненко, М. В. Михайлов, Т. Н. Первозванская; под редакцией Л. Ф. Вьюненко. Москва: Издательство «Юрайт», 2020. 283 с. URL: https://urait.ru/bcode/450145
- 2. Сдвижков О. А. Практикум по методам оптимизации: Учебное пособие. М.: Вузовский учебник, НИЦ ИНФРА-М, 2020.-231 с. Текст: электронный. URL: https://new.znanium.com/catalog/product/1036460 .
- 3. Боев В. Д. Моделирование в среде Anylogic: учебное пособие для вузов. М.: Издательство «Юрайт», 2020. –298 с. URL: https://urait.ru/bcode/453068
- 4. Боев В. Д. Имитационное моделирование систем: учебное пособие для вузов. Москва: Издательство «Юрайт», 2020. 253 с. –URL: https://urait.ru/bcode/453964
- 5. Кудрявцев К. Я. Методы оптимизации: учеб. пособие для вузов / К. Я. Кудрявцев, А. М. Прудников. 2-е изд. М. : Издательство «Юрайт», 2018. 141 с. (Серия : Университеты России).

Дополнительная

- 1. Методы оптимизации. Задачник: учебное пособие для бакалавриата и магистратуры / В. В. Токарев, А. В. Соколов, Л. Г. Егорова, П. А. Мышкис. Москва: Издательство «Юрайт», 2019. 292 с. https://biblio-online.ru/bcode/429999.
- 2. Ремезова Е. М. Имитационное моделирование в среде AnyLogic: лаб. практикум / Владим. гос. ун-т им. А. Г. и Н. Г. Столетовых. Владимир: Изд-во ВлГУ, 2017. 87 с.
- 3. Пантелеев А. В. Методы оптимизации. Практический курс: учебное пособие / А.В. Пантелеев, Т. А. Летова. Москва: Логос, 2020. 424c. URL: https://znanium.com/catalog/product/1212440.
- 4. Аттетков А. В. Методы оптимизации: учебное пособие / А.В. Аттетков, В.С. Зарубин, А.Н. Канатников. Москва: ИЦ РИОР: НИЦ Инфра-М, 2019. 270 с. URL: https://znanium.com/catalog/product/1002733.
- 5. Древс Ю. Г. Имитационное моделирование: учебное пособие для вузов / Ю. Г. Древс, В. В. Золотарёв. 2-е изд., испр. и доп. Москва: Издательство «Юрайт», 2020. 142 с. URL: https://urait.ru/bcode/456381
- 6. Моделирование систем и процессов: учебник для академического бакалавриата / под ред. В. Н. Волковой, В. Н. Козлова. М.: Издательство «Юрайт», 2019. 450 с. (Серия: Бакалавр. Академический курс).
- 7. Девятков В. В. Имитационные исследования в среде моделирования GPSS STUDIO: учеб. пособие / В.В. Девятков, Т.В. Девятков, М.В. Федотов; под общ. ред. В.В. Девяткова. Москва: Вузовский учебник: ИНФРА-М, 2020. 283 с. Текст: электронный. URL: https://new.znanium.com/catalog/product/1046042
- 8. Теория информационных процессов и систем : учебник / Ю. Ю. Громов, В. Е. Дидрих, О. Г. Иванова, В. Г. Однолько. Тамбов : Изд-во ФГБОУ ВПО «ТГТУ», 2014 172 с.
- 9. Горлушкина Н.Н. Системный анализ и моделирование информационных процессов и систем. СПб: Университет ИТМО, 2016. 120 с.

6.2.Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

Национальная электронная библиотека (НЭБ) www.rusneb.ru

ELibrary.ru Научная электронная библиотека www.elibrary.ru

Электронная библиотека Grebennikon.ru www.grebennikon.ru

Cambridge University Press

ProQuest Dissertation & Theses Global

SAGE Journals

Taylor and Francis

JSTOR

https://www.anylogic.ru/ сайт компании-разработчика систем имитационного моделирования.

http://elina-computer.ru/static/nasha-missiya.html – сайт компании "Элина компьютер" (исследования в области имитационного моделирования).

http://simulation.su/ru.html сайт Национального общества имитационного моделирования.

https://math.semestr.ru/ онлайн калькуляторы оптимизационных задач.

http://systems-analysis.ru/ Системный анализ. Справочно-информационный сайт.

6.3 Профессиональные базы данных и информационно-справочные системы

Доступ к профессиональным базам данных: https://liber.rsuh.ru/ru/bases

Информационные справочные системы:

- 1. Консультант Плюс
- 2. Гарант

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЛИСПИПЛИНЫ

Для материально-технического обеспечения дисциплины используются: лекционный класс с видео проектором и компьютерный класс, оборудованный современными персональными компьютерами для каждого студента, оборудованного в свою очередь современным программным обеспечением: на компьютере должна быть установлена актуальная версия операционной системы Windows компании Microsoft, прикладной пакет программ Microsoft Office версии не ниже 2007, пакет MATLAB, свободно распространяемые версии систем имитационного моделирования GPSS, Anylogic.

№	Наименование ПО	Производитель	Способ распространения
1.	Microsoft Office 2010 Pro	Microsoft	лицензионное
2.	Windows XP или Windows 7	Microsoft	лицензионное
3.	GPSS Studio	Minuteman Software	свободно распространяемое
4.	AnyLogic	The AnyLogic Company	свободно распространяемое

8. ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

В ходе реализации дисциплины используются следующие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

- для слепых и слабовидящих: лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением; письменные задания выполняются на компьютере со специализированным программным обеспечением или могут быть заменены устным ответом; обеспечивается индивидуальное равномерное освещение не менее 300 люкс; для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств; письменные задания оформляются увеличенным шрифтом; экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.
- для глухих и слабослышащих: лекции оформляются в виде электронного документа, либо предоставляется звукоусиливающая аппаратура индивидуального пользования; письменные задания выполняются на компьютере в письменной форме; экзамен и зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования.
- для лиц с нарушениями опорно-двигательного аппарата: лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением; письменные задания выполняются на компьютере со специализированным программным обеспечением; экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены университетом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

- для слепых и слабовидящих: в печатной форме увеличенным шрифтом, в форме электронного документа, в форме аудиофайла.
 - для глухих и слабослышащих: в печатной форме, в форме электронного документа.
- для обучающихся с нарушениями опорно-двигательного аппарата: в печатной форме, в форме электронного документа, в форме аудиофайла.

Учебные аудитории для всех видов контактной и самостоятельной работы, научная библиотека и иные помещения для обучения оснащены специальным оборудованием и учебными местами с техническими средствами обучения:

- для слепых и слабовидящих: устройством для сканирования и чтения с камерой SARA CE; дисплеем Брайля PAC Mate 20; принтером Брайля EmBraille ViewPlus;
- для глухих и слабослышащих: автоматизированным рабочим местом для людей с нарушением слуха и слабослышащих; акустический усилитель и колонки; для обучающихся с нарушениями опорно-двигательного аппарата: передвижными, регулируемыми эргономическими партами СИ-1; компьютерной техникой со специальным программным обеспечением.

9. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

9.1.Планы практических занятий для очной, очно-заочной формы

Тема 1 (2 ч.). Моделирование систем, основные понятия. Принципы построения моделей

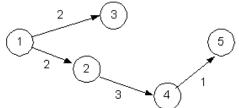
Вопросы для рассмотрения.

- 1. Сущность и этапы моделирования сложных систем.
- 2. Компьютерное моделирование и имитационный эксперимент как необходимые составляющие процесса моделирования.
- 3. Методы моделирования информационных процессов.
- 4. Методы моделирования информационных технологий.
- 5. Качественные и количественные методы системного анализа объектов информатизации.
- 6. Метод экспертных оценок.
- 7. Технология имитационного моделирования информационных процессов.
- 8. Применение методов оптимизации в математическом моделировании.
- 9. Перспективы развития методов исследования и моделирования информационных процессов и технологий.

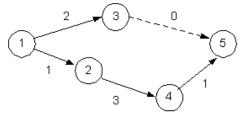
Тема 2 (10 ч.). Аналитическое моделирование. Методы оптимизации

Практическое занятие 1.1(4ч). Модели сетевого планирования и управления.

Раздел "Сетевые модели" представлен онлайн-калькуляторами (https://math.semestr.ru/):


- 1. <u>Параметры сетевой модели</u>. Рассчитываются такие показатели как ранний и поздний сроки свершения события, резервы времени, <u>критический путь</u> (наибольший путь в сети) и другие. Пример. Для сетевого графика, изображенного на рисунке, укажите критические работы и найдите длину критического пути.
- 2. Наикратчайший путь в сети.
- 3. Минимальный путь в графе методом потенциалов.

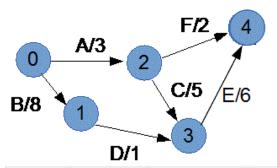
В контрольных работах в условиях данные обычно задаются двумя способами: таблицей и графом. При табличном способе задания, необходимо указать количество вершин и количество строк таблицы.


Если в задании приведены минимальное и максимальное время i-ой работы, отметьте пункт Провести анализ сетевой модели.

Если задан граф, выберите из списка Ввод данных Матрица расстояний. Также необходимо будет указать количество вершин.

Особые случаи: конечных (завершающих) вершин не должно быть большей одной (см. рисунок).

Для исключения подобных ситуаций, необходимо ввести дополнительную (фиктивную) дугу с нулевым значением (t = 0).


Вершины могут нумероваться с 0 (0,1,2,3,...) или с 1 (1,2,3,4,...).

Пример. Описание проекта в виде перечня выполняемых операций с указанием их взаимосвязи приведено в таблице. Построить сетевой график, определить критический путь,

построить календарный график.

Операция	Непосредственно предшествующая операция	Продолжительность
A	-	3
В	-	8
С	A	5
D	В	1
Е	C,D	6
F	A	2

Решение:

Работа (i,j)	Количес тво предшес твующи х работ	Продолжит ельность t_{ij}	Ранни е сроки : начал о t _{ij} P.H.	Ранни е сроки: оконч ание t _{ij} P.O.	Позд ние срок и: нача ло t _{ij} ^{П.H.}	Поздн ие сроки: оконч ание t _{ij} ^{П.О.}	Резер вы време ни: полн ый t_{ij}^{Π}	Резерв ы времен и: свобод ный t _{ij} ^{C.B.}	Резер вы време ни: собы тий R _j
(0,1)	0	8	0	8	0	8	0	0	0
(0,2)	0	3	0	3	1	4	1	0	1
(1,3)	1	1	8	9	8	9	0	0	0
(2,3)	1	5	3	8	4	9	1	1	0
(2,4)	1	2	3	5	13	15	10	10	0
(3,4)	2	6	9	15	9	15	0	0	0

Критический путь: (0,1)(1,3)(3,4). Продолжительность критического пути: 15.

Независимый резерв времени работы R_{ij}^H — часть полного резерва времени, если все предшествующие работы заканчиваются в поздние сроки, а все последующие работы начинаются в ранние сроки. Использование независимого резерва времени не влияет на величину резервов времени других работ. Независимые резервы стремятся использовать, если окончание предыдущей работы произошло в поздний допустимый срок, а последующие работы хотят выполнить в ранние сроки. Если $R_{ij}^H \ge 0$, то такая возможность имеется. Если $R_{ij}^H < 0$ (величина отрицательна), то такая возможность отсутствует, так как предыдущая работа ещё не оканчивается, а последующая уже должна начаться (показывает время, которого не хватит у данной работы для выполнения ее к самому раннему сроку совершения ее (работы) конечного события при условии, что эта работа будет начата в самый поздний срок ее начального события). Фактически независимый резерв имеют лишь те работы, которые не лежат на максимальных путях, проходящих через их начальные и конечные события.

Практическое занятие 1.2(2 ч). Элементы теории массового обслуживания.

Теория массового обслуживания исследует на основе теорий вероятностей математические методы количественной оценки процессов массового обслуживания. Общей особенностью всех задач, связанных с массовым обслуживанием, является случайный характер исследуемых явлений.

Сервис представлен тремя онлайн-калькуляторами:

- 1. Одноканальные СМО.
- 2. Многоканальные СМО.
- 3. Замкнутые системы массового обслуживания СМО.

Для решения задач на тему **Теория массового обслуживания** необходимо определиться с типом модели СМО: одноканальные или многоканальные. В многоканальных СМО количество устройств обслуживания n (количество рабочих, кассиров, бригад, моек и т.п.) больше одного. Обычно **интенсивность потока заявок** λ задана явно. **Интенсивность потока обслуживания** μ может задаваться в виде времени обслуживания t_{obc} . В сервисе необходимо ввести либо параметр μ , либо t_{obc} (только одно из двух).

Выбор СМО зависит как от числа каналов n, так и от допустимой длины очереди m. По указанным признакам различается ряд типов СО, перечисленных в таблице.

№ п/п	Параметры СО		Тип СО	
	n	m	imi co	
1	1	0	Одноканальная, без очереди	
2	n > 1	0	Многоканальная, без очереди	
3	1	$1 \le m \le \infty$	Одноканальная, с ограниченной очередью	
4	n > 1	$1 \le m \le \infty$	Многоканальная, с ограниченной очередью	
5	1	$\mathbf{m} = \infty$	Одноканальная, с неограниченной очередью	
6	n > 1	$\mathbf{m} = \infty$	Многоканальная, с неограниченной очередью	

По числу обслуживающих каналов различают **одноканальные и многоканальные СО**. В зависимости от целочисленного значения m используются следующие названия в классификации типов СО:

- 1. m = 0 6ез очереди;
- 2. m > 0 c очередью.

Если число мест в очереди m является конечным, то в CO могут происходить отказы в предоставлении обслуживания некоторым заявкам. В связи с этим CO указанного типа называются системами с отказами. Отклоняются от обслуживания те заявки, в момент прихода которых все места в очереди случайно оказались занятыми, или, если m=0, все каналы оказались занятыми. Считается, что заявка, получившая отказ в обслуживании, навсегда теряется для CO. Таким образом, пропускная способность CO этого типа всегда

меньше 100%.

Если m не ограничено, что иногда условно записывают как $m=\infty$, то соответствующая CO называется системой с ожиданием. В CO данного типа пришедшая заявка при отсутствии возможности немедленного обслуживания ожидает обслуживания, какой бы длинной ни были очередь и продолжительность времени ожидания.

Все СМО делятся на СМО с отказами (параметр m не используется), СМО с ограниченной длиной очереди и СМО с неограниченной очередью. Параметр m (длина очереди) используется для последних двух СМО. При этом в СМО с неограниченной очередью можно указывать любое значение m. Например, m=3. Тогда будут рассчитаны вероятности нахождения в очереди 1,2,3 заявки.

Временные параметры рассчитываются в часах или в минутах, в зависимости от заданного параметра λ .

Пример.

Интернет-провайдер в небольшом городе имеет 5 выделенных каналов обслуживания. В среднем на обслуживание одного клиента уходит 25 минут. В систему в среднем поступает 6 заказов в час. Если свободных каналов нет, следует отказ. Определить характеристики обслуживания: вероятность отказа, среднее число занятых обслуживанием линий связи, абсолютную и относительную пропускные способности, вероятность обслуживания. Найти число выделенных каналов, при котором относительная пропускная способность системы будет не менее 0,95. Считать, что потоки заявок и обслуживаний простейшие.

Формулы для расчета параметров простейших СМО

$$\bar{t} = \frac{1}{\lambda}, \bar{t}_{ob} = \frac{1}{\mu}, \bar{t}_{ooc} = \frac{1}{\nu}, \bar{a} = \frac{\lambda}{\mu}, \bar{b} = \frac{\nu}{\mu}, \gamma = \frac{\alpha}{n}$$

, ,	, a , o	⁷ 1		
Показатели эффективности системы			СМО с ограничением на длину очереди (n, a, m)	Чистая СМО с ожиданием (n, a) , $\gamma < 1$
Вероятность того, что все каналы свободны	$p_0 = \left[\sum_{k=0}^n \frac{\alpha^k}{k!}\right]^{-1}$	$p_0 = \left[\sum_{k=0}^{n} \frac{\alpha^k}{k!} + \frac{\alpha^n}{n!} \sum_{s=1}^{\infty} \frac{\alpha^s}{\prod_{k=1}^{s} (n+k\beta)}\right]^{-1}$	$p_0 = \left[\sum_{k=0}^{n} \frac{\alpha^k}{k!} + \frac{\alpha^n}{n!} \sum_{s=1}^{m} \gamma^s \right]^{-1}$	$p_0 = \left[\sum_{k=0}^{n} \frac{\alpha^k}{k!} + \frac{\alpha^n}{n!} \frac{\alpha}{n-\alpha}\right]^{-1}$
Вероятность того, что занято k каналов $0 \le k \le n$	α^{κ}	<u>a</u> *	$p_k = \frac{\alpha^k}{k!} p_0$	$P_k = \frac{\boldsymbol{\alpha^k}}{k!} p_0$
Вероятность того, что заняты все n каналов, s заявок в очереди	-	$ \frac{\alpha^{s}}{\prod_{k=1}^{s} (n+k\beta)}, $ $ p_{n+s} = p_{n} = 1 $	$p_{n+s} = \gamma^{s} \times p_{n}; \ 1 \leq s \leq m.$	$p_{n+s}=\gamma^{s}\times p_{n}$
Вероятность отказа	$p_{\text{OTV}} = p_n$	β _	$p_{ ext{otk}} = p_{n+m}$	$p_{ ext{otk}}=0$
Вероятность полной загрузки системы	$p_{n.3} = p_n$	$\sum_{n=1}^{\infty} p_{n+s}$	$p_{\text{n.3}} = p_n \frac{1 - (\gamma)^{m+1}}{1 - \gamma}$	$p_{n.3} = \frac{\alpha}{(n-1)!(n-\alpha)}$

Вероятность обслуживания, относительная пропускная способность системы	$p_{\text{o6c}} = \frac{\lambda_b}{\lambda} = 1 - p_n = \frac{\overline{n}_3}{\alpha}$	$p_{\text{ob}c} = \frac{\lambda_{\overline{b}}}{\lambda} = 1 - p_{\text{otk}} = \frac{\overline{n}_3}{\alpha}$	$p_{\text{o6c}} = \frac{\lambda_b}{\lambda} = 1 - p_{n+m} = \frac{\overline{n}_3}{\alpha}$	$p_{\text{o6c}} = \frac{\lambda_b}{\lambda} = 1$
Абсолютная пропускная способность системы	$l_b = l{\cdot}p_{obc}$	_	1	$l_b = 1$
Вероятность занятости канала	$p_{\scriptscriptstyle 3\mathrm{K}}=k_{\scriptscriptstyle 3}=rac{ar{oldsymbol{n}_{\scriptscriptstyle 3}}}{oldsymbol{n}}$	$p_{\scriptscriptstyle 3\mathrm{K}}=k_{\scriptscriptstyle 3}=rac{ar{oldsymbol{ar{n}}_{\scriptscriptstyle 3}}}{oldsymbol{ar{n}}}$	$p_{3K} = k_3 = \frac{\overline{n}_3}{n}$	$p_{3\mathrm{K}} = k_3 = \frac{\overline{\boldsymbol{n}_3}}{\boldsymbol{n}}$
Среднее число свободных	$\sum_{k=0}^{n-1} (n-k) p_k$	$\sum_{k=0}^{n-1} (n-k) p_k$	$\sum_{k=0}^{n-1} (n-k) p_k$	$\sum_{n_0=k=0}^{n-1} (n-k) p_k$
Вероятность простоя канала $p_{n,\kappa}$,	$p_{n.\kappa} = k_n = \frac{\overline{n_0}}{n}$	$p_{n.\kappa}=k_n=rac{ar{oldsymbol{n_0}}}{oldsymbol{n}}$	$p_{n.\kappa} = k_n = \frac{\overline{n_0}}{n}$	$p_{n.\kappa} = k_n = \frac{\overline{n_0}}{n}$
Среднее число заявок в очереди	_	$\sum_{r=s=1}^{\infty} s \cdot p_{n+s}$	$\sum_{r=s=1}^{m} s \cdot p_{n+s}$	$r = p_n \frac{\gamma}{(1-\gamma)^2}$
Вероятность наличия очереди	-	$\sum_{p_{\text{H.O}}}^{\infty} p_{n+s}$	$\gamma \left(1-\left(\gamma\right)^{m}\right)$	$p_{n.o} = p_n \frac{\alpha}{n - \alpha}$
Среднее время наличия очереди	-	_	$\sqrt{1-(\gamma)^m}$	$\bar{t}_{n.o_{-}} \frac{\alpha}{\lambda(n-\alpha)}$

Среднее время		$ar{r}$	$ar{r}$	$ar{r}$
пребывания	-	<u> </u>	,	<u> </u>
заявки в очереди		$t_{ooic} = \lambda$	^t _{σοιc =} λ	$t_{ooc} = \lambda$.
Среднее время	\bar{n}_{z}	I	I	I
пребывания заявки в системе	•	$\overline{\lambda}_{l} = \overline{\lambda}_{l}, l = n_3 + r$	$\overline{\mathbf{L}}_{\mathbf{LHC}} = \overline{\mathbf{\lambda}}, \ l = n_3 + r$	$\overline{\lambda}_{l} = \overline{\lambda}_{l} = n_3 + r$
Среднее время	1	_ 1	1 1 $p_{H.0}^2$	1
занятости канала	- -	$t_{3.K} = \overline{} = p_{N.O} \cdot t_{N.O}$		$\bar{t}_{3.K_{=}} + p_{HO} \cdot \bar{t}_{HO}$
(любого)	ζ .κ ₌ μ	μ	$\bar{t}_{3.K=} \mu_+ \lambda p_n$	2K= μ
Среднее время	$\overline{\xi}_{1LK} = \overline{\xi}_{3K} \frac{1 - \overline{k}_3}{L}$	$\bar{\xi}_{\mathbf{n},\mathbf{k}} = \bar{\xi}_{\mathbf{a},\mathbf{k}} \frac{1 - \bar{k}_{\mathbf{a}}}{1 - \bar{k}_{\mathbf{a}}}$	$\bar{t}_{n,r} = \bar{t}_{n,0} \frac{p_{\text{H.O}}}{1}$	$ \bar{\xi}_{n,r} = \bar{\xi}_{n,n} \frac{p_{\text{H.O}}}{1} $
простоя канала	1	k_3	$1-p_{\mathbf{H.0}}$	$1-p_{\text{H.O}}$
Среднее время	_ 1		n	<i>D</i>
полной загрузки	$\bar{t}_{n.3} = \frac{1}{1-1}$	-	$ \bar{t}_{\mathbf{n.3}} = \bar{t}_{\mathbf{n.3}} \frac{p_{\mathbf{n.3}}}{1 - p_{\mathbf{n.3}}} $	$t_{\mathbf{L3}} = t_{\mathbf{L3}} \frac{\mathbf{L3}}{\mathbf{L3}}$
системы	whr		$1-p_{\mathbf{n.3}}$	$-1-p_{n.3}$

Тема 2 (10 ч.). Имитационное моделирование. Инструментальные средства.

Практическая работа № 2.1(4 ч). Модель обработки документов в организации. Практическая работа № 2.2(2 ч). Модель обработки запросов сервером.

Тема 3 (10 ч.). Имитационное моделирование. Инструментальные средства.

Практическая работа № 3.1(2 ч). Вероятностное моделирование информационных систем. Практическая работа № 3.2(4 ч). Имитационное моделирование информационного противоборства систем.

Тема 4 (10 ч.). Основы планирования эксперимента.

Практическая работа № 4.1(4 ч). Идентификация показателя эффективности информационной системы на основе двухфакторной модели второго порядка. Практическая работа № 4.2(2 ч). Идентификация характеристик информационной системы на основе многофакторной модели первого порядка.

Примечание: Методические рекомендации к выполнению практических работ №№ 3.1, 3.2, 4.1 и 4.2 изложены в методическом пособии кафедры.

Практическая работа № 2.1. МОДЕЛЬ ОБРАБОТКИ ДОКУМЕНТОВ В ОРГАНИЗАЦИИ

Цели работы

- Получить представление о системах массового обслуживания (СМО).
- Провести имитационное моделирование работы СМО и сравнить полученные результаты с аналитическим решением.

Постановка задачи

Для приёма и обработки документов в организации назначена группа из трёх сотрудников. Ожидаемая интенсивность потока документов — 15 документов в час. Среднее время обработки одного документа одним сотрудником $t_{\rm ob.\ c}=12$ мин. Каждый сотрудник может принимать документы из любой организации. Освободившийся сотрудник обрабатывает последний из поступивших документов. Поступающие документы должны обрабатываться с вероятностью не менее 0,95. Определите, достаточно ли назначенной группы из трёх сотрудников для выполнения поставленной задачи [9].

Ход работы

Аналитическое решение

Группа сотрудников работает как СМО, состоящая из трёх каналов, с отказами, без очереди. Поток документов с интенсивностью $\lambda=15$ (1/ч) можно считать простейшим, так как он суммарный от нескольких организаций. Интенсивность обслуживания $\mu=\frac{1}{t_{\rm of,\,c}}=$

 $=\frac{60}{12}=5$ (1/ч). Закон распределения неизвестен, но это несущественно, так как показано, что для систем с отказами он может быть произвольным. Граф состояний СМО — это схема «гибели и размножения». Для неё имеются готовые выражения для предельных вероятностей состояний системы:

$$\begin{split} P_1 &= \frac{p}{1!} P_0, P_2 = \frac{p^2}{2!} P_0, \dots, P_n = \frac{p^n}{n!} P_0, P_{n+1} = \frac{p^{n+1}}{nn!} P_0, \dots, P_{n+m} = \\ &= \frac{p^{n+m}}{n^m n!} P_0, P_0 = (1 + \frac{p}{1!} + \dots + \frac{p^n}{n!} + \frac{p^{n+1}}{nn!} + \frac{p^{n+2}}{n^{2n}} + \dots + \frac{p^{n+m}}{n^{mn!}}. \end{split}$$

Для просмотра работ необходимо дважды кликнуть на фрагменте выше. (Необходим Acrobat Reader)

Литература: [2] из списка дополнительной, работы №№ 4, 5.

Тема 4 (2 ч.). Основы планирования эксперимента.

- 1. Основные типовые задачи, решаемые при проведении эксперимента.
- 2. Факторы. Уровень фактора. Требования, предъявляемые к факторам при планировании эксперимента. Понятия: отклик, функция отклика, поверхность отклика.

- 3. Методы планирования эксперимента. Полный факторный эксперимент типа 2^k : матрица планирования, вычисление коэффициентов уравнения регрессии. Матрица планирования полного факторного эксперимента. Проверка значимости коэффициентов и адекватности уравнения регрессии.
- 4. Методы планирования эксперимента. Дробный факторный эксперимент. Планы типа 2^{k-p} . Дробная реплика.
- 5. Планы второго порядка. Композиционные планы Бокса-Уилсона. Ортогональные планы второго порядка.
- 6. Критерии оптимальности планов. Планирование эксперимента при поиске оптимальных условий.

9.2.Методические рекомендации по подготовке письменных работ

Не предусмотрены.

ПРИЛОЖЕНИЕ

Приложение 1

Приложение 1. АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Цель дисциплины: познакомить магистрантов с основными методами моделирования и оптимизации информационных систем. Дать представление о математических моделях и методах анализа и оптимизационных подходах к решению прикладных задач. Ознакомить магистрантов с методами построения аналитических и имитационных моделей процессов обработки информации, а также с оценкой результатов моделирования процессов.

Задачи:

научить магистрантов эффективно использовать принципы математического моделирования; различать типы практических задач в зависимости от типа используемой модели; правильно выбирать метод решения задач;

сформировать способность формализовать задачи прикладной области, при решении которых возникает необходимость использования количественных и качественных оценок;

сформировать способность анализировать, моделировать и оптимизировать прикладные и информационные процессы.

В результате освоения дисциплины студент должен:

Знать эволюцию системных представлений, основные положения теории систем; основные понятия и определения системного анализа; содержание и сущность математических методов моделирования и оптимизации; методы математического моделирования и оптимизации применительно к проектированию информационных систем и управления ими.

Уметь с позиций системного анализа применять методы математического моделирования и оптимизации применительно к проектированию информационных систем и управления ими.

Владеть методами математического моделирования и оптимизации применительно к проектированию информационных систем и управления ими.